NCSA

Data-Intensive Computing for
GECCO o o
2009 Competent Genetic Algorithms:
. A— A Pilot Study using Meandre

NWW.SIgevo.orgfgecco-2009)

Xavier Llora

National Center for Supercomputing Applications
University of lllinois at Urbana-Champaign
Urbana, lllinois, 61801

xllora@ncsa.illinois.edu

http://www.ncsa.illinois.edu/~xllora

Outline

* Data-intensive computing and HPC!?

* |Is this related at all to evolutionary computation!?
e Data-intensive computing with Meandre

* GAs and competent GAs

* Data-intensive computing for GAs

NCSA

2 Minute HPC History

* The eighties and early nineties picture
 Commodity hardware rare, slow, and costly
* Supercomputers were extremely expensive
* Most of them hand crafted and only few units
* Two competing families
e CISC (e.g. Cray C90 with up to 16 processors)
* RISC (e.g. Connection Machine CM-5 with up 4,096 processors)

* Late nineties commodity hardware hit main stream

 Start becoming popular, cheaper, and faster
* Economy of scale

* Massive parallel computers build from commodity components become a
viable option

NCSA

Two Visions

e C90 like supercomputers were like a comfy pair of trainers
* Oriented to scientific computing
 Complex vector oriented supercomputers
* Shared memory (lots of them)
* Multiprocessor enabled via some intercommunication networks
* Single system image

 CMS5 like computers did not get massive traction, but a bit
* General purpose (as long as you can chop the work in simple units)
* Lots of simple processors available
e Distributed memory pushed new programming models (message passing)
 Complex interconnection networks

* NCSA have shared memory, distributed memory, and gpgpu based

Miniaturization Building Bridges

* Multicores and gpgpus are reviving the C90 flavor

e The CM-5 flavor now survives as distributed clusters of not so
simple units

Control Models of Parallelization in EC

Individual

I N N

T T 777

But Data is also Part of the Equation

* Google and Yahoo! revived an old route

e Usually refers to:
* Infrastructure
* Programming techniques/paradigms

* Google made it main stream after their MapReduce model
* Yahoo! provides and open source implementation

* Hadoop (MapReduce)
 HDFS (Hadoop distributed filesystem)

« Store petabytes reliably on commodity hardware (fault tolerant)
* Programming model

* Map: Equivalent to the map operation on functional programming
* Reduce:The reduction phase after maps are computed

NCSA

A Simple Example

T
Z r® — reduce(map(x, sqr), sum)
1=0
X X X X
map map map map
X2 X2 X2 X2
reduce N reduce reduce
sum

NCSA

Is This Related to EC?

* How can we easily benefit of the current core race painlessly?
 NCSA’s Blue Waters estimated may top on 100K

* Yes on several facets

* Large optimization problems need to deal with large population sizes
(Sastry, Goldberg & Llora, 2007)

* Large-scale data mining using genetic-based machine learning (Llora et
al. 2007)

 Competent GAs model building extremely costly and data rich (Pelikan
et al.2001)
* The goal?
* Rethink parallelization as data flow processes

* Show that traditional models can be map to data-intensive computing
models

* Foster you curiosity

Data-Intensive Computing with Meandre

NCSA

The Meandre Infrastructure Challenges

* NCSA infrastructure effort on data-intensive computing
* Transparency

* From a single laptop to a HPC cluster
* Not bound to a particular computation fabric
* Allow heterogeneous development

* Intuitive programming paradigm
* Modular Components assembled into Flows
* Foster Collaboration and Sharing

* Open Source
* Service Orientated Architecture (SOA)

NCSA

Basic Infrastructure Philosophy

* Dataflow execution paradigm

* Semantic-web driven

* Web oriented

* Facilitate distributed computing

* Support publishing services

* Promote reuse, sharing, and collaboration

* More information at http://seasr.org/meandre

NCSA

Data Flow Execution in Meandre

* A simple example ¢ < at+b

A traditional control-driven language

a =1
b = 2
c = a+b

Execution following the sequence of instructions
* One step at a time

* atb+c+d requires 3 steps
* Could be easily parallelized

NCSA

Data Flow Execution in Meandre

» Data flow execution is driven by data
e The previous example may have 2 possible data flow versions

Stateless data flow

The Basic Building Blocks: Components

Component

N
‘\
A

RDF descriptor of the ., The component

components behavior implementation

NCSA

Go with the Flow: Creating Complex Tasks

e Directed multigraph of components creates a flow

Concatenate
Text

To Upper Print
— Case Text -

Automatic Parallelization:
Speed and Robustness

* Meandre ZigZag language allow automatic parallelization

To Upper
Case Text
Push
Text To Upper
Concatenate Case Text Print
—> |
Text Text
Push
Text

To Upper
Case Text

i

GAs and Competent GAs

NCSA

Selectorecombinative GASs

|. Initialize the population with random individuals
2. Evaluate the fitness value of the individuals

3. Select good solutions by using s-wise tournament selection
without replacement (Goldberg, Korb & Deb, 1 989)

4. Create new individuals by recombining the selected population

using uniform crossover (Sywerda, |989)
5. Evaluate the fitness valueof all offspring

6. Repeat steps 3-5 until convergence criteria are met

NCSA

Extended Compact Genetic Algorithm

e Harik et al. 2006

* Initialize the population (usually random initialization)
e Evaluate the fitness of individuals

e Select promising solutions (e.g., tournament selection)

* Build the probabilistic model

* Optimize structure & parameters to best fit selected individuals

e Automatic identification of sub-structures
e Sample the model to create new candidate solutions

 Effective exchange of building blocks

* Repeat steps 27 till some convergence criteria are met

NCSA

eCGA Model Building Process

* Use model-building procedure of extended compact GA

* Partition genes into (mutually) independent groups
 Start with the lowest complexity model

* Search for a least-complex, most-accurate model

Model Structure Metric
[Xo] [X,] [X,]1 [X;]1 [X,1 [Xs] [X,] [X;] [Xs] [Xe] [X,6] [X,,] 1.0000
[Xo] [X,] [X2] [X;] [X,X;] [X,] [X;] [Xe] [Xo] [X,0] [X,,] 0.9933
[Xo] [X,] [X,] [X;] [XXsX,] [X,] [Xg] [Xo] [X,0] [X,] 0.9819
[Xo] [X,]1 [X,] [X;] DX, XX X,] [Xe] [Xs] [X,0] [X,,] 0.9644
[Xo] [X,] [X,] [X3] [X XX, X;] [XgXoX, (X,] 0.9273
[XoX X X;] [X XX X;] [XeXgX, X,] 0.8895

NCSA

Data-Intensive Flows for Competent GAs

NCSA

Selectorecombinative GA

b

s DL I w8 oo (g o] g (A= W
SBp o PRINT

|—C1 s EPS TRWO NOIT

SOED

NCSA

sGAs Execution Profile and Parallelization

* Intel 2.8Ghz QuadCore, 4Gb RAM. Average of 20 runs.

sbp
sbp soed
eps/mapper
eps/paralell/O
eps/paralell/1
eps/paralell/2
eps eps/paralell/3
eps/reducer
twrops
ucbps/mapper
ucbps/paralell/0
ucbps/paralell/1
ucbps/paralell/2
ucbps/paralell/3

ucbps ucbps/reducer
noit

soed

[]
|:
[]
[]
[]
[]
|D

twrops

noit

5000 —
10000 —
15000 —
20000 —

0 —

5000 —
10000 —
15000 —
20000 —

NCSA

eCGA Model Model building

uv;é.:—'_|_uv;

J ‘;} 0— ECGA greedy builder Print ECGA model

Initialize ECGA

D L
L0 _’3 Oo—
L0 ‘

Update ECGA partition cache

NCSA

eCGA Execution Profile and Parallelization

* Intel 2.8Ghz QuadCore, 4Gb RAM. Average of 20 runs.

init_ecga

init_ecga update_partitions/mapper

update_partitions/mapper

update_partitions/mapper

 I— R — S—

update_partitions update_partitions/paralell/O

update_partitions/paralell/1

update_partitions/paralell/2

greedy_ecga_mb
update_partitions/paralell/3 -

update_partitions/reduce

print_model greedy_ecga_mb I

print_model

10000 —
20000
30000 —
40000 —
50000 —
10000 —
20000
30000 —
40000 —
50000 -

NCSA

eCGA Model Building Speedup

* Intel 2.8Ghz QuadCore, 4Gb RAM. Average of 20 runs.
* Speedup against original eCGA model building

m_

o

4
|
©]

\

Speedup vs. Original eCGA Model Building
3
|
o)

Number of cores

NCSA

Scalability on NUMA Systems

Run on NCSA's SGI Altix Cobalt

1,120 processors and up to 5 TB of RAM
« SGI NUMAIink

 NUMA architecture

* Test for speedup behavior

* Average of 20 independent runs
* Automatic parallelization of the partition evaluation

* Results still show the linear trend (despite the NUMA)
* |6 processors, speedup = 14.01
* 32 processors, speedup = 27.96

NCSA

Wrapping Up

NCSA

summary

* Evolutionary computation is data rich

* Data-intensive computing can provide to EC:
e Tap into parallelism quite painless
* Provide a simple programming and modeling
* Boost reusability
* Tackle otherwise intractable problems

* Shown that equivalent data-intensive computing versions of
traditional algorithms exist

e Linear parallelism can be tap transparently

NCSA

NCSA

Data-Intensive Computing for
GECCO o o
2009 Competent Genetic Algorithms:
. A— A Pilot Study using Meandre

NWW.SIgevo.orgfgecco-2009)

Xavier Llora

National Center for Supercomputing Applications
University of lllinois at Urbana-Champaign
Urbana, lllinois, 61801

xllora@ncsa.illinois.edu

http://www.ncsa.illinois.edu/~xllora

