
Xavier Llorà

National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign
Urbana, Illinois, 61801

xllora@ncsa.illinois.edu
http://www.ncsa.illinois.edu/~xllora

Data-Intensive Computing for
Competent Genetic Algorithms:
A Pilot Study using Meandre

Outline

• Data-intensive computing and HPC?
• Is this related at all to evolutionary computation?
• Data-intensive computing with Meandre
• GAs and competent GAs
• Data-intensive computing for GAs

2 Minute HPC History

• The eighties and early nineties picture
• Commodity hardware rare, slow, and costly
• Supercomputers were extremely expensive
• Most of them hand crafted and only few units
• Two competing families

• CISC (e.g. Cray C90 with up to 16 processors)
• RISC (e.g. Connection Machine CM-5 with up 4,096 processors)

• Late nineties commodity hardware hit main stream
• Start becoming popular, cheaper, and faster
• Economy of scale
• Massive parallel computers build from commodity components become a

viable option

Two Visions

• C90 like supercomputers were like a comfy pair of trainers
• Oriented to scientific computing
• Complex vector oriented supercomputers
• Shared memory (lots of them)
• Multiprocessor enabled via some intercommunication networks
• Single system image

• CM5 like computers did not get massive traction, but a bit
• General purpose (as long as you can chop the work in simple units)
• Lots of simple processors available
• Distributed memory pushed new programming models (message passing)
• Complex interconnection networks

• NCSA have shared memory, distributed memory, and gpgpu based

Miniaturization Building Bridges

• Multicores and gpgpus are reviving the C90 flavor
• The CM-5 flavor now survives as distributed clusters of not so

simple units

Control Models of Parallelization in EC

Run 2 Run 6

Run 3 Run 7

Run 1 Run 5

Run 10

Run 11

Run 9 Master

Slave

Individual Evaluation

Slave Slave

Migration

But Data is also Part of the Equation

• Google and Yahoo! revived an old route
• Usually refers to:

• Infrastructure
• Programming techniques/paradigms

• Google made it main stream after their MapReduce model
• Yahoo! provides and open source implementation

• Hadoop (MapReduce)
• HDFS (Hadoop distributed filesystem)

• Store petabytes reliably on commodity hardware (fault tolerant)
• Programming model

• Map: Equivalent to the map operation on functional programming
• Reduce: The reduction phase after maps are computed

n∑

i=0

x2 → reduce(map(x, sqr), sum)

A Simple Example

x x x x

x2 x2 x2 x2

sum

map map map map

reduce reducereduce reduce

Is This Related to EC?

• How can we easily benefit of the current core race painlessly?
• NCSA’s Blue Waters estimated may top on 100K
• Yes on several facets

• Large optimization problems need to deal with large population sizes
(Sastry, Goldberg & Llorà, 2007)

• Large-scale data mining using genetic-based machine learning (Llorà et
al. 2007)

• Competent GAs model building extremely costly and data rich (Pelikan
et al. 2001)

• The goal?
• Rethink parallelization as data flow processes
• Show that traditional models can be map to data-intensive computing

models
• Foster you curiosity

Data-Intensive Computing with Meandre

The Meandre Infrastructure Challenges

• NCSA infrastructure effort on data-intensive computing
• Transparency

• From a single laptop to a HPC cluster
• Not bound to a particular computation fabric
• Allow heterogeneous development

• Intuitive programming paradigm
• Modular Components assembled into Flows
• Foster Collaboration and Sharing

• Open Source
• Service Orientated Architecture (SOA)

Basic Infrastructure Philosophy

• Dataflow execution paradigm
• Semantic-web driven
• Web oriented
• Facilitate distributed computing
• Support publishing services
• Promote reuse, sharing, and collaboration
• More information at http://seasr.org/meandre

Data Flow Execution in Meandre

• A simple example c ← a+b
• A traditional control-driven language

a = 1
b = 2
c = a+b

• Execution following the sequence of instructions
• One step at a time

• a+b+c+d requires 3 steps
• Could be easily parallelized

Data Flow Execution in Meandre

• Data flow execution is driven by data
• The previous example may have 2 possible data flow versions

value(a)
value(c)+

value(b)

Stateless data flow

value(a) value(c)value(b)

State-based data flow

?
+

The Basic Building Blocks: Components

Component

RDF descriptor of the
components behavior

The component
implementation

Go with the Flow: Creating Complex Tasks

• Directed multigraph of components creates a flow

Push
Text

Push
Text

Concatenate
Text

To Upper
Case Text

Print
Text

Automatic Parallelization:
Speed and Robustness

• Meandre ZigZag language allow automatic parallelization

Push
Text

Push
Text

Concatenate
Text

To Upper
Case Text

Print
Text

To Upper
Case Text

To Upper
Case Text

GAs and Competent GAs

Selectorecombinative GAs

1. Initialize the population with random individuals

2. Evaluate the fitness value of the individuals

3. Select good solutions by using s-wise tournament selection

without replacement (Goldberg, Korb & Deb, 1989)

4. Create new individuals by recombining the selected population

using uniform crossover (Sywerda, 1989)

5. Evaluate the fitness valueof all offspring

6. Repeat steps 3-5 until convergence criteria are met

Extended Compact Genetic Algorithm

• Harik et al. 2006

• Initialize the population (usually random initialization)

• Evaluate the fitness of individuals

• Select promising solutions (e.g., tournament selection)

• Build the probabilistic model
• Optimize structure & parameters to best fit selected individuals

• Automatic identification of sub-structures

• Sample the model to create new candidate solutions
• Effective exchange of building blocks

• Repeat steps 2–7 till some convergence criteria are met

eCGA Model Building Process

• Use model-building procedure of extended compact GA
• Partition genes into (mutually) independent groups
• Start with the lowest complexity model
• Search for a least-complex, most-accurate model

 Model Structure

 Metric
[X0] [X1] [X2] [X3] [X4] [X5] [X6] [X7] [X8] [X9] [X10] [X11]
 1.0000

[X0] [X1] [X2] [X3] [X4X5] [X6] [X7] [X8] [X9] [X10] [X11]
 0.9933

[X0] [X1] [X2] [X3] [X4X5X7] [X6] [X8] [X9] [X10] [X11]

 0.9819

[X0] [X1] [X2] [X3] [X4X5X6X7] [X8] [X9] [X10] [X11]

 0.9644

 …

[X0] [X1] [X2] [X3] [X4X5X6X7] [X8X9X10X11]

 0.9273

 …

[X0X1X2X3] [X4X5X6X7] [X8X9X10X11]

 0.8895

Data-Intensive Flows for Competent GAs

Selectorecombinative GA

ucbps

noit

twrops

eps

soed

sbp

0

50
00

10
00
0

15
00
0

20
00
0

sGAs Execution Profile and Parallelization

noit
ucbps/reducer

ucbps/paralell/3
ucbps/paralell/2
ucbps/paralell/1
ucbps/paralell/0
ucbps/mapper

twrops
eps/reducer

eps/paralell/3
eps/paralell/2
eps/paralell/1
eps/paralell/0
eps/mapper

soed
sbp

0

50
00

10
00
0

15
00
0

20
00
0

• Intel 2.8Ghz QuadCore, 4Gb RAM. Average of 20 runs.

eCGA Model Model building

print_model

greedy_ecga_mb

update_partitions

init_ecga

0

10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

eCGA Execution Profile and Parallelization

print_model

greedy_ecga_mb

update_partitions/reduce

update_partitions/paralell/3

update_partitions/paralell/2

update_partitions/paralell/1

update_partitions/paralell/0

update_partitions/mapper

update_partitions/mapper

update_partitions/mapper

init_ecga

0

10
00
0

20
00
0

30
00
0

40
00
0

50
00
0

• Intel 2.8Ghz QuadCore, 4Gb RAM. Average of 20 runs.

●

●

●

●
1

2
3

4
5

Number of cores

Sp
ee

du
p

vs
. O

rig
in

al
 e

CG
A

M
od

el
 B

ui
ld

in
g

1 2 3 4

eCGA Model Building Speedup

• Intel 2.8Ghz QuadCore, 4Gb RAM. Average of 20 runs.
• Speedup against original eCGA model building

Scalability on NUMA Systems

• Run on NCSA’s SGI Altix Cobalt
• 1,120 processors and up to 5 TB of RAM
• SGI NUMAlink
• NUMA architecture
• Test for speedup behavior
• Average of 20 independent runs
• Automatic parallelization of the partition evaluation
• Results still show the linear trend (despite the NUMA)

• 16 processors, speedup = 14.01
• 32 processors, speedup = 27.96

Wrapping Up

Summary

• Evolutionary computation is data rich
• Data-intensive computing can provide to EC:

• Tap into parallelism quite painless
• Provide a simple programming and modeling
• Boost reusability
• Tackle otherwise intractable problems

• Shown that equivalent data-intensive computing versions of
traditional algorithms exist

• Linear parallelism can be tap transparently

Xavier Llorà

National Center for Supercomputing Applications
University of Illinois at Urbana-Champaign
Urbana, Illinois, 61801

xllora@ncsa.illinois.edu
http://www.ncsa.illinois.edu/~xllora

Data-Intensive Computing for
Competent Genetic Algorithms:
A Pilot Study using Meandre

