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Outline

• Data-intensive computing and HPC?
• Is this related at all to evolutionary computation?
• Data-intensive computing with Meandre
• GAs and competent GAs
• Data-intensive computing for GAs



2 Minute HPC History

• The eighties and early nineties picture 
• Commodity hardware rare, slow, and costly
• Supercomputers were extremely expensive
• Most of them hand crafted and only few units
• Two competing families

• CISC (e.g. Cray C90 with up to 16 processors)
• RISC (e.g. Connection Machine CM-5 with up 4,096 processors)

• Late nineties commodity hardware hit main stream
• Start becoming popular, cheaper, and faster
• Economy of scale
• Massive parallel computers build from commodity components become a 

viable option



Two Visions

• C90 like supercomputers were like a comfy pair of trainers 
• Oriented to scientific computing
• Complex vector oriented supercomputers
• Shared memory (lots of them)
• Multiprocessor enabled via some intercommunication networks
• Single system image

• CM5 like computers did not get massive traction, but a bit
• General purpose (as long as you can chop the work in simple units)
• Lots of simple processors available
• Distributed memory pushed new programming models (message passing)
• Complex interconnection networks

• NCSA have shared memory, distributed memory, and gpgpu based 



Miniaturization Building Bridges 

• Multicores and gpgpus are reviving the C90 flavor
• The CM-5 flavor now survives as distributed clusters of not so 

simple units



Control Models of Parallelization in EC
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But Data is also Part of the Equation

• Google and Yahoo! revived an old route
• Usually refers to:

• Infrastructure
• Programming techniques/paradigms

• Google made it main stream after their MapReduce model
• Yahoo! provides and open source implementation

• Hadoop (MapReduce)
• HDFS (Hadoop distributed filesystem)

• Store petabytes reliably on commodity hardware (fault tolerant)
• Programming model

• Map: Equivalent to the map operation on functional programming
• Reduce: The reduction phase after maps are computed 



n∑

i=0

x2 → reduce(map(x, sqr), sum)

A Simple Example

x x x x

x2 x2 x2 x2

sum

map map map map

reduce reducereduce reduce



Is This Related to EC?

• How can we easily benefit of the current core race painlessly?
• NCSA’s Blue Waters estimated may top on 100K
• Yes on several facets

• Large optimization problems need to deal with large population sizes 
(Sastry, Goldberg & Llorà, 2007)

• Large-scale data mining using genetic-based machine learning (Llorà et 
al. 2007)

• Competent GAs model building extremely costly and data rich (Pelikan 
et al. 2001)

• The goal?
• Rethink parallelization as data flow processes
• Show that traditional models can be map to data-intensive computing 

models
• Foster you curiosity



Data-Intensive Computing with Meandre



The Meandre Infrastructure Challenges

• NCSA infrastructure effort on data-intensive computing
• Transparency

• From a single laptop to a HPC cluster
• Not bound to a particular computation fabric
• Allow heterogeneous development 

• Intuitive programming paradigm 
• Modular Components assembled into Flows
• Foster Collaboration and Sharing

• Open Source
• Service Orientated Architecture (SOA)



Basic Infrastructure Philosophy 

• Dataflow execution paradigm
• Semantic-web driven
• Web oriented
• Facilitate distributed computing
• Support publishing services
• Promote reuse, sharing, and collaboration
• More information at http://seasr.org/meandre 



Data Flow Execution in Meandre

• A simple example  c ← a+b
• A traditional control-driven language

a = 1
b = 2
c = a+b

• Execution following the sequence of instructions 
• One step at a time

• a+b+c+d requires 3 steps 
• Could be easily parallelized



Data Flow Execution in Meandre

• Data flow execution is driven by data
• The previous example may have 2 possible data flow versions 

value(a)
value(c)+

value(b)

Stateless data flow

value(a) value(c)value(b)

State-based data flow

?
+



The Basic Building Blocks: Components

Component

RDF descriptor of the
components behavior

The component
implementation



Go with the Flow: Creating Complex Tasks

• Directed multigraph of components creates a flow
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Automatic Parallelization:
Speed and Robustness

• Meandre ZigZag language allow automatic parallelization
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GAs and Competent GAs



Selectorecombinative GAs

1. Initialize the population with random individuals

2. Evaluate the fitness value of the individuals

3. Select good solutions by using s-wise tournament selection 

without replacement (Goldberg, Korb & Deb, 1989)

4. Create new individuals by recombining the selected population 

using uniform crossover (Sywerda, 1989)

5. Evaluate the fitness valueof all offspring

6. Repeat steps 3-5 until convergence criteria are met



Extended Compact Genetic Algorithm

• Harik et al. 2006

• Initialize the population (usually random initialization)

• Evaluate the fitness of individuals

• Select promising solutions (e.g., tournament selection)

• Build the probabilistic model
• Optimize structure & parameters to best fit selected individuals

• Automatic identification of sub-structures

• Sample the model to create new candidate solutions
• Effective exchange of building blocks

• Repeat steps 2–7 till some convergence criteria are met 



eCGA Model Building Process

• Use model-building procedure of extended compact GA
• Partition genes into (mutually) independent groups
• Start with the lowest complexity model
• Search for a least-complex, most-accurate model


         Model Structure
  
 
 
 Metric
[X0] [X1] [X2] [X3] [X4] [X5] [X6] [X7] [X8] [X9] [X10] [X11]
                 1.0000

[X0] [X1] [X2] [X3] [X4X5] [X6] [X7] [X8] [X9] [X10] [X11]
                 0.9933

[X0] [X1] [X2] [X3] [X4X5X7] [X6] [X8] [X9] [X10] [X11]
 
 0.9819

[X0] [X1] [X2] [X3] [X4X5X6X7] [X8] [X9] [X10] [X11]
 
 0.9644


 
       
 …
 
 
 
     
[X0] [X1] [X2] [X3] [X4X5X6X7] [X8X9X10X11]
 
 
 0.9273


 
       
 …
 
 
 
     
[X0X1X2X3] [X4X5X6X7] [X8X9X10X11]
 
 
                  0.8895



Data-Intensive Flows for Competent GAs



Selectorecombinative GA 
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sGAs Execution Profile and Parallelization
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• Intel 2.8Ghz QuadCore, 4Gb RAM.  Average of 20 runs.



eCGA Model Model building



print_model
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eCGA Execution Profile and Parallelization
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• Intel 2.8Ghz QuadCore, 4Gb RAM.  Average of 20 runs.



●

●

●

●
1

2
3

4
5

Number of cores

Sp
ee

du
p 

vs
. O

rig
in

al
 e

CG
A 

M
od

el
 B

ui
ld

in
g

1 2 3 4

eCGA Model Building Speedup

• Intel 2.8Ghz QuadCore, 4Gb RAM.  Average of 20 runs.
• Speedup against original eCGA model building



Scalability on NUMA Systems

• Run on NCSA’s SGI Altix Cobalt
• 1,120 processors and up to 5 TB of RAM
• SGI NUMAlink
• NUMA architecture
• Test for speedup behavior
• Average of 20 independent runs
• Automatic parallelization of the partition evaluation
• Results still show the linear trend (despite the NUMA)

• 16 processors, speedup = 14.01
• 32 processors, speedup = 27.96



Wrapping Up



Summary

• Evolutionary computation is data rich
• Data-intensive computing can provide to EC:

• Tap into parallelism quite painless
• Provide a simple programming and modeling
• Boost reusability
• Tackle otherwise intractable problems

• Shown that equivalent data-intensive computing versions of 
traditional algorithms exist

• Linear parallelism can be tap transparently
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