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Motivation

* Pittsburgh classifier systems

e Can we apply Wilson’s ideas for evolving rule sets
formed only by maximally accurate and general rules?

e Bottom up approach for evolving such rules

- The compact classifier system

* Previous Multiobjective (Llora, Goldberg, Traus, Bernadd,
2003) approaches were top down
- Explicitly address accuracy and generality
- Use it to push and product compact rule sets

Side product:
- Scalability challenge of De Jong & Spears (1991) representation
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Binary Rule Encoding

e De Jong & Spears (1991)

Widely used in Pittsburgh classifiers
GALE, MOLS, GAssist have used it

color shape Size
red green blue white round square huge large medium small
1 1 1 1 0 1 o) 1 1 0
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A rule is expressed as (1111]01]0110)
Equivalent to Holland's (1975) representation (#11,#12)

A rule set is a disjunction of such rules



Previous Efforts based using
Multiobjective Optimization
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(Llora, Goldberg, Traus, Bernado, 2003)
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Maximally Accurate and General Rules

« Accuracy and generality can be computed using data set

a(r) — nt+(r) + nt—(r) E(r) — nt+(r)

t m

* Fitness should combine accuracy and generality
f(r)=a(r)-&r)

e Such measure can be either applied to rules or a rule sets

 The compact classifier systems uses this fitness and a
compact genetic algorithm (cGA) to evolve such rules

 Each cGA run use a different initial perturbed probability
vector
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The Compact Genetic Algorithm Can Make It

* Rules may be obtained optimizing
f(r)=a(r)-&r)

 The basic cGA scheme

Initialization p; =0.5

Model sampling (tlvvo Individuals are generated)
Evaluation (f(r))

Selection (tournament selection)

Probabilistic model updation

o O A W DN P

Repeat steps 2-5 until termination criteria are met
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cGAModel Perturbation

e Facilitate the evolution of different rules

« Explore the frequency of appearance of each optimal
rule

 Initial model perturbation

p, =0.5+U(-0.4,0.4)

* EXxperiments using the 3-input multiplexer
1,000 independent runs

« Visualize the pair-wise relations of the genes
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Initial Perturbed Vectors Leading to rule
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Initial Perturbed Vectors Leading to rule
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Perturbation Summary

* 97% of the runs lead to a maximally general and
accurate rule

« The provability of evolving each of the optimal rules was
roughly 1/3

« The initial perturbed probability vectors that lead to an
optimal rule show pair-wise relations among genes

« The pair-wise relations reflect the problem structure
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But One Rule Is Not Enough

 Model perturbation in cGA evolve different rules

 The goal: evolve population of rules that solve the
problem together

* The fitness measure (f(r)) can be also be applied to rule
sets

Two mechanisms:

- Spawn a population until the solution is meet

- Fusing populations when they represent the same rule
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Spawning and Fusing Populations of Rules

IWLCS 2005

Table 1: Algorithmic description of the CCS.

o WMo

D «— {pert(po), - - -, pert(pk) }
Foreach p; € D run cGA.

R « {r; sampled from p; }.
Compute f(R) using equation 3.

If given p;, p; € D and d(p;,p;) < 0
then D «— D\ {p;}.

If f(R)=10return R

else D «+— D U {pert(p)} and goto 2.
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Experiments & Scalability

Analysis using multiplexer problems (3-, 6-, and 11-input)

e The number of rules in [O] grow exponentially

- 2!, where i is the number of inputs

The CGA success as a function of the problem size
- 3-input: 97%

- 6-input: 73.93%

- 11-input:43.03%

Scalability over 10,000 independent runs
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Scalability of CCS
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Unmatchable Rules: A Byproduct

A rule is unmatchable if:

- At least one attribute in the contain have all its possible values

setto O
color shape Size
red green blue white round square huge large medium small
1 1 1 1 0) 0 o) 1 1 0

 The rule (1111]00]0110) force the shape to be neither
round or square

e Hence no data instance will ever match i1t

* Direct impact on the scalability of LCS/GBML system using
It (as simple experiments with the multiplexer show)
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3-Input Multiplexer
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Growth Ratio of Unmatchable Rules (I/111)

 An unmatchable rule has of all attribute values set to 0
* Analysis for problems with binary attributes (worst case)
 The total number of rules

(=2
 Number of rules matchable rules (all attributes set to

either 01, 11, & 11) |

P(l)=232
« Size of the unmatchable rule set plateau

o()=2()-w()=2'- 3
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Growth Ratio of Unmatchable Rules (lI/I11)

e Growth ratio of unmatchable rules

I
A= =71
32
e It can be approximated by
p(l) ~ e
C= In(ij =0.143
3

 The growth ratio (p) for this representation grows
exponentially
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Growth Ratio of Unmatchable Rules (I11/111)
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Conclusions

 Initial steps to evolve rule sets formed formed only by
maximally accurate and general rules using Pittsburgh
systems

e Using a cGA and the appropriate fitness function (CCS)
we can evolve such rules

* Rule representation has a direct connection to the
scalability of any GBML system
- A wrong choice makes the problem extremely hard
 Further analysis for different representations is needed
(Stone, 2004)
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