The Compact Classifier System: Scalability Analysis and First Results

Xavier Llorà, Kumara Sastry, & David E. Goldberg

Illinois Genetic Algorithms Lab University of Illinois at Urbana-Champaign

{xllora,kumara,deg}@illigal.ge.uiuc.edu

Motivation

- Pittsburgh classifier systems
- Can we apply Wilson's ideas for evolving rule sets formed only by maximally accurate and general rules?
- Bottom up approach for evolving such rules
 - The compact classifier system
- Previous Multiobjective (Llorà, Goldberg, Traus, Bernadó, 2003) approaches were top down
 - Explicitly address accuracy and generality
 - Use it to push and product compact rule sets
- Side product:
 - Scalability challenge of De Jong & Spears (1991) representation

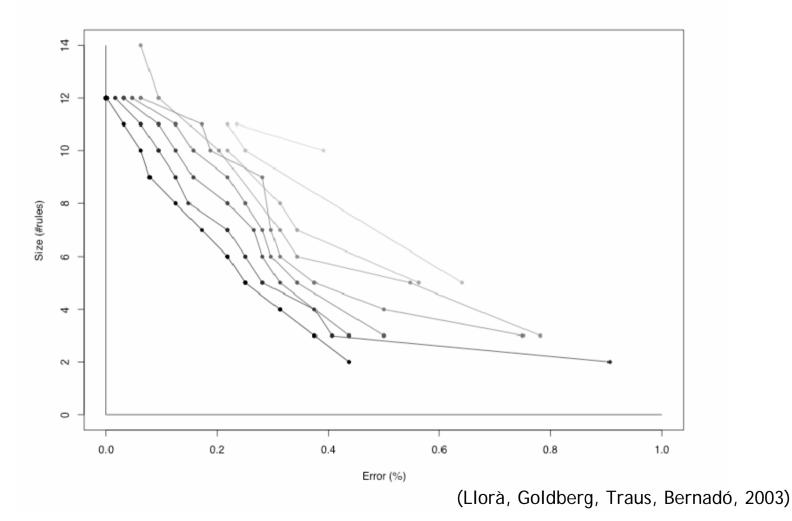
Binary Rule Encoding

- De Jong & Spears (1991)
- Widely used in Pittsburgh classifiers
- GALE, MOLS, GAssist have used it

color	shape	size				
red green blue white	round square	huge large medium small				
1 1 1 1	0 1	0 1 1 0				

- A rule is expressed as (1111|01|0110)
- Equivalent to Holland's (1975) representation (#11,#12)
- A rule set is a disjunction of such rules

Previous Efforts based using Multiobjective Optimization



Maximally Accurate and General Rules

• Accuracy and generality can be computed using data set

$$\alpha(r) = \frac{n_{t+}(r) + n_{t-}(r)}{n_t} \qquad \mathcal{E}(r) = \frac{n_{t+}(r)}{n_m}$$

• Fitness should combine accuracy and generality

$$f(r) = \alpha(r) \cdot \varepsilon(r)^{\gamma}$$

- Such measure can be either applied to rules or a rule sets
- The *compact classifier systems* uses this fitness and a *compact genetic algorithm* (cGA) to evolve such rules
- Each cGA run use a different initial perturbed probability vector

The Compact Genetic Algorithm Can Make It

• Rules may be obtained optimizing

 $f(r) = \alpha(r) \cdot \varepsilon(r)^{\gamma}$

- The basic cGA scheme
 - 1. Initialization $p_{x_i}^0 = 0.5$
 - 2. Model sampling (two individuals are generated)
 - 3. Evaluation (f(r))
 - 4. Selection (tournament selection)
 - 5. Probabilistic model updation
 - 6. Repeat steps 2-5 until termination criteria are met

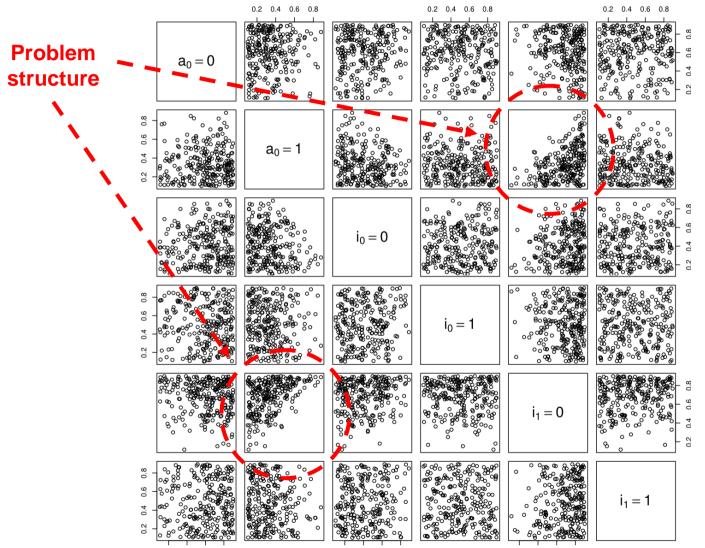
cGAModel Perturbation

- Facilitate the evolution of different rules
- Explore the frequency of appearance of each optimal rule
- Initial model perturbation

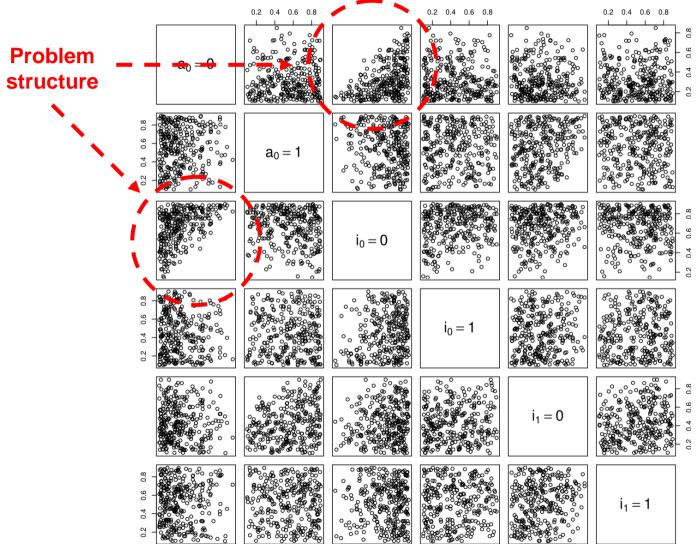
$$p_{x_i}^0 = 0.5 + U(-0.4, 0.4)$$

- Experiments using the 3-input multiplexer
- 1,000 independent runs
- Visualize the pair-wise relations of the genes

Initial Perturbed Vectors Leading to rule 100111(01#)



Initial Perturbed Vectors Leading to rule 011101(1#1)



Perturbation Summary

- 97% of the runs lead to a maximally general and accurate rule
- The provability of evolving each of the optimal rules was roughly 1/3
- The initial perturbed probability vectors that lead to an optimal rule show pair-wise relations among genes
- The pair-wise relations reflect the problem structure

But One Rule Is Not Enough

- Model perturbation in cGA evolve different rules
- The goal: evolve population of rules that solve the problem together
- The fitness measure (f(r)) can be also be applied to rule sets
- Two mechanisms:
 - Spawn a population until the solution is meet
 - Fusing populations when they represent the same rule

Spawning and Fusing Populations of Rules

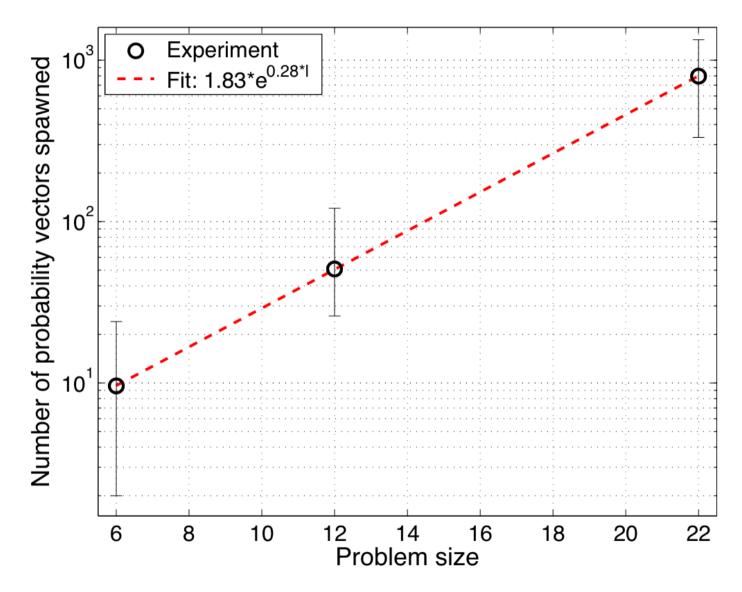
Table 1: Algorithmic description of the CCS.

- 1. $\mathcal{D} \leftarrow \{pert(p_0), \dots, pert(p_k)\}.$
- 2. Foreach $p_i \in \mathcal{D}$ run cGA.
- 3. $\mathcal{R} \leftarrow \{r_i \text{ sampled from } p_i\}.$
- 4. Compute $f(\mathcal{R})$ using equation 3.
- 5. If given $p_i, p_j \in \mathcal{D}$ and $d(p_i, p_j) < \theta$ then $\mathcal{D} \leftarrow \mathcal{D} \setminus \{p_i\}$.
- 6. If $f(\mathcal{R}) = 1.0$ return \mathcal{R} else $\mathcal{D} \leftarrow \mathcal{D} \cup \{pert(p)\}$ and goto 2.

Experiments & Scalability

- Analysis using multiplexer problems (3-, 6-, and 11-input)
- The number of rules in [O] grow exponentially
 - 2ⁱ, where i is the number of inputs
- The CGA success as a function of the problem size
 - 3-input: 97%
 - 6-input: 73.93%
 - 11-input:43.03%
- Scalability over 10,000 independent runs

Scalability of CCS



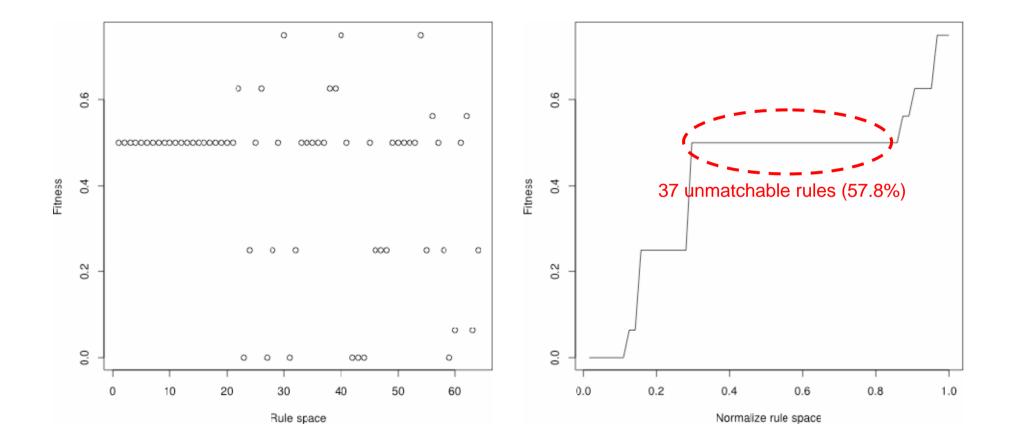
Unmatchable Rules: A Byproduct

- A rule is unmatchable if:
 - At least one attribute in the contain have all its possible values set to 0

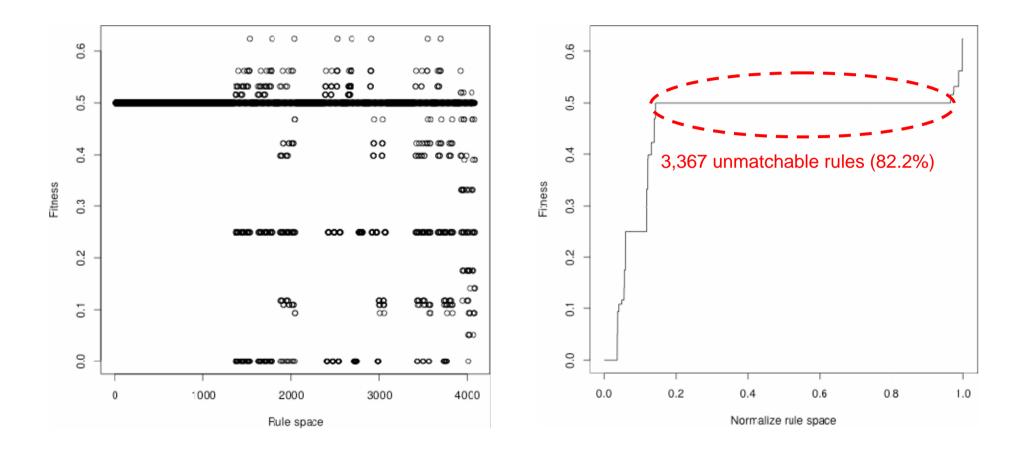
color				shape		size				
red	green	blue	white	round	square	huge	large	medium	small	
1	1	1	1	0	0	0	1	1	0	

- The rule (1111|00|0110) force the shape to be neither round or square
- Hence no data instance will ever match it
- Direct impact on the scalability of LCS/GBML system using it (as simple experiments with the multiplexer show)

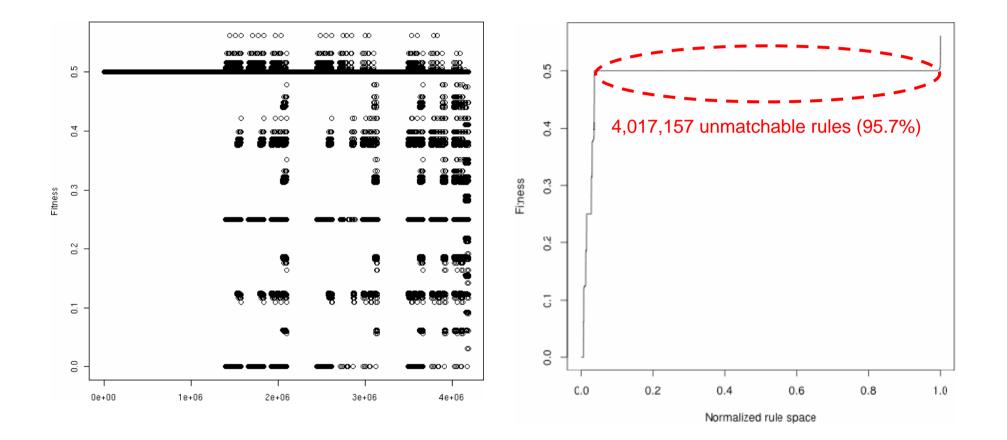
3-Input Multiplexer



6-Input Multiplexer



11-Input Multiplexer



Growth Ratio of Unmatchable Rules (I/III)

- An unmatchable rule has of all attribute values set to 0
- Analysis for problems with binary attributes (worst case)
- The total number of rules

$$\Sigma(l) = 2^l$$

Number of rules matchable rules (all attributes set to either 01, 11, & 11)

$$\Psi(l)=3^{\overline{2}}$$

• Size of the unmatchable rule set plateau

$$\Phi(l) = \Sigma(l) - \Psi(l) = 2^{l} - 3^{\frac{l}{2}}$$

Growth Ratio of Unmatchable Rules (II/III)

• Growth ratio of unmatchable rules

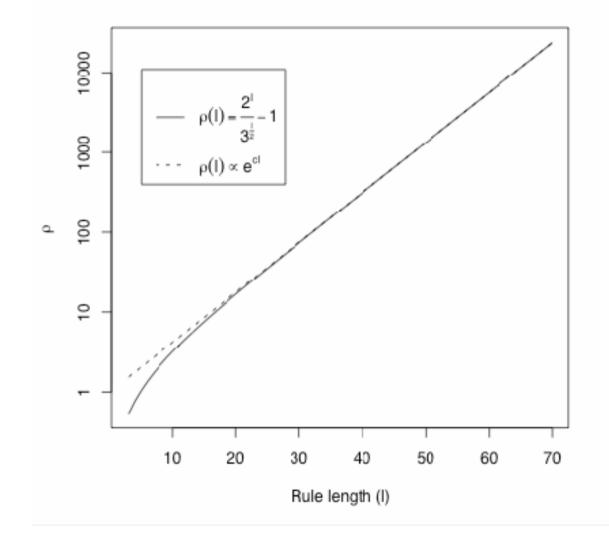
$$\rho(l) = \frac{\Phi(l)}{\Psi(l)} = \frac{2^l}{3^{\frac{l}{2}}} - 1$$

• It can be approximated by

$$\rho(l) \approx e^{cl}$$
$$c = \ln\left(\frac{2}{\sqrt{3}}\right) = 0.143$$

 The growth ratio (ρ) for this representation grows exponentially

Growth Ratio of Unmatchable Rules (III/III)



Conclusions

- Initial steps to evolve rule sets formed formed only by maximally accurate and general rules using Pittsburgh systems
- Using a cGA and the appropriate fitness function (CCS) we can evolve such rules
- Rule representation has a direct connection to the scalability of any GBML system
 - A wrong choice makes the problem extremely hard
- Further analysis for different representations is needed (Stone, 2004)