Sometimes thinking a bit helps to rush decisions that may lead to weird places. Today I was going over a simple genetic algorithm for numeric optimization written in C. The code is nothing special, tournament selection without replacement, SBX crossover operator, and polynomial mutation. To the point, I was running a simple OneMax-like problem (in this case, minimize the value of the sum of all the genes), and I was quite surprised the guy was taking so long for.

$time ./GATest
----------------------- GA parameters ------------------------------------
Seed: 69
Lower/upper bounds: \[1.000000,0.000000\]
Genes: 18
Population size: 2000
Iterations: 30
Tournament size: 6
Crossover: pc=0.900000, gwp=0.500000, etaC=10.000000
Mutation: pm=0.100000, etaM=20.000000
----------------------- Evolution Statistics -----------------------------
4.663210	8.974190	13.158102
3.351912	7.405489	11.619360
2.285005	5.375426	9.531691
1.326318	3.711156	7.178203
0.767981	2.432192	4.790854
0.392001	1.543097	3.223604
0.279961	0.977706	2.308249
0.173406	0.600002	1.335702
0.092746	0.359343	0.877080
0.044705	0.216218	0.533978
0.029053	0.130256	0.315306
0.022827	0.078331	0.172908
0.013641	0.047317	0.105886
0.007370	0.028098	0.066994
0.004320	0.016787	0.038499
0.002807	0.010254	0.025155
0.001604	0.006238	0.014528
0.001007	0.003799	0.008883
0.000708	0.002212	0.005627
0.000343	0.001305	0.003263
0.000211	0.000781	0.002025
0.000131	0.000468	0.001155
0.000085	0.000280	0.000774
0.000054	0.000168	0.000392
0.000031	0.000100	0.000243
0.000017	0.000061	0.000144
0.000010	0.000037	0.000083
0.000006	0.000022	0.000054
0.000003	0.000013	0.000035
0.000002	0.000008	0.000020
0.000002	0.000005	0.000011
----------------------- Final outcome ------------------------------------
Min:	(0.000002)	0.000000	0.000000	0.000000	0.000000.000000	0.000000	0.000000	0.000000	0.000000	0.000000.000000	0.000000	0.000000	0.000000	0.000000	0.000000.000000	0.000000	
Max:	(0.000011)	0.000000	0.000001	0.000000	0.000000.000001	0.000000	0.000000	0.000001	0.000000	0.000000.000000	0.000003	0.000000	0.000000	0.000000	0.000000.000002	0.000001	

real	0m6.748s
user	0m6.228s
sys	0m0.088s

Yup, after turning on all the possible compiler optimizations I could think of, 6.7 seconds was the best I could do on a first generation MacBook Pro. I was wondering if I should spend the time writing a simple multithreaded evaluation. As I said, before making something simple complicated, I decided to put grab Shark (Mac’s free profiler) and get a better picture of what was going. Oh boy! Intuition looking at the wrong place! The outcome: 45% of time spend on tournament selection and 31% generating random number. Mmh, digging a bit further almost all time of tournament selection was spent shuffling an array to guarantee tournaments without replacements.

/** Runs tournament selection without replacement to create a new population
 * 
 * popDest: The destination population
 * popInit: The original population
 * fita: The fitness of the initial populaiton
 * iSize: Tournament size
 * iIndividuals: The population size
 * iGenes: The number of genes of an individual
 */
void ga_tournament_selection ( Population popDest, Population popInit, Fitness * fita, int iSize, int iIndividuals , int iGenes )
{
	int piaShuffle[iSize];
 
	int i = -1;
	int j = -1;
 
	int iIndTmp = -1;
	int iIndWin = -1;
 
	Fitness fitWin = DBL_MAX;
	Fitness fitTmp = DBL_MAX;
 
	for ( i=0 ; i<iIndividuals ; i++ ) {
		/* Initialization for the current tournament */
		fitWin  = DBL_MAX;
		iIndWin = -1;
		genrand_shuffle (piaShuffle,iIndividuals);
		for ( j=0 ; j<iSize ; j++ ) {
			// A new randomly drawn individual
			iIndTmp = piaShuffle[j];
			fitTmp  = fita[piaShuffle[j]];
			// If it is the first is the winner
			if ( iIndWin==-1 ) {
				iIndWin  = iIndTmp;
				fitWin = fitTmp;
			}
			// If not, chack the fitness (Minimize)
			else if ( fitWin>fitTmp ) {
				iIndWin  = iIndTmp;
				fitWin = fitTmp;
			}
		}
		population_copy_individual(popDest[i],popInit[iIndWin],iGenes);		
	}
}

It was genrand_shuffle (see below) the one that took most of the time. Also if you take a close inspection you will see that it is also the one to blame for calling calling too many times genrand_int31.

void genrand_shuffle ( int * pia, int iSize )
{
	int i, iOther;
	register int iTmp;
	int iRndMax = iSize-1;
 
	// Initialize
	for( i=0; i<iSize; i++ ) pia[i] = i;
	// shuffle
	for( i=0; i<iRndMax; i++ ) {
	    iOther = genrand_int31()%iSize;
	    iTmp = pia[iOther];
	    pia[iOther] = pia[i];
	    pia[i] = iTmp;
	}
}

This inherited implementation of tournament selection works well for small populations, but as you increase the population size, each tournament requires shuffling a number proportional to the population size. If you make the numbers, that leads to a quadratic implementation of tournament selection without replacement. Mmh, really needed? Definitely not. The only thing you need to guarantee to provide a tournament selection without replacement is that you provide different individuals for the tournaments (avoiding repetition). If that selection can be done quickly, you can take the complexity of the implementation down to linear. So there I went, and modified the shuffling function as follows.

void genrand_shuffle_fast ( int * pia, int iSize, int iSlots )
{
	int i = 0;
	int j = 0;
 
	pia[i++] = genrand_int31()%iSize;
	while ( i<iSlots ) {
		pia[i] = genrand_int31()%iSize;
		for ( j=i-1 ; j>=0 && j<i ; j++ )
			if ( pia[j]==pia[i] ) 
				break;
 
		if ( j==i ) i++ ;
	}
}

Tournaments sizes are usually much much smaller than population sizes (e.g. s=6 for the pop_size=2,000 individuals population used above). Thus, if random numbers are generated, the chances of repeating it are quite small. Also if you also make sure it is not there (and if it is, you generate a new out), basically your are set. (This implementation will only work efficiently if s<pop_size, otherwise the cost of checking and generated new numbers will be even worst than the original version).

So there I went. I modified the original inherited version of the tournament selection without replacement, and rerun the simple time measures.

$ time ./GATest
----------------------- GA parameters ------------------------------------
Seed: 69
Lower/upper bounds: \[1.000000,0.000000\]
Genes: 18
Population size: 2000
Iterations: 30
Tournament size: 6
Crossover: pc=0.900000, gwp=0.500000, etaC=10.000000
Mutation: pm=0.100000, etaM=20.000000
----------------------- Evolution Statistics -----------------------------
4.663210	8.974190	13.158102
3.350933	7.401935	11.503243
1.964580	5.461794	9.246779
1.297656	3.819533	7.364562
0.810695	2.512797	5.142622
0.478789	1.603199	3.652348
0.305106	0.999304	2.138109
0.191904	0.602315	1.336870
0.108593	0.361237	0.869652
0.060862	0.219145	0.502403
0.040076	0.136125	0.307478
0.028629	0.084893	0.191327
0.016301	0.052274	0.115169
0.009433	0.032699	0.071849
0.003934	0.020275	0.047970
0.002762	0.012328	0.031204
0.001405	0.007259	0.019575
0.001043	0.004280	0.010909
0.000790	0.002550	0.005799
0.000404	0.001530	0.003566
0.000287	0.000950	0.002406
0.000198	0.000600	0.001390
0.000127	0.000386	0.000818
0.000068	0.000245	0.000599
0.000045	0.000153	0.000377
0.000026	0.000093	0.000206
0.000020	0.000058	0.000125
0.000011	0.000035	0.000095
0.000007	0.000022	0.000049
0.000004	0.000014	0.000029
0.000002	0.000009	0.000018
----------------------- Final outcome ------------------------------------
Min:	(0.000002)	0.000000	0.000000	0.000000	0.000000.000000	0.000000	0.000000	0.000000	0.000000	0.000000.000000	0.000000	0.000000	0.000000	0.000000	0.000000.000000	0.000000	
Max:	(0.000018)	0.000001	0.000000	0.000000	0.000000.000000	0.000000	0.000001	0.000001	0.000000	0.000000.000004	0.000000	0.000001	0.000001	0.000002	0.000000.000001	0.000001	

real	0m0.258s
user	0m0.246s
sys	0m0.006s

Yup. That simple change yielded a speedup of 26.15. Mmh, as I said, a little bit of thinking helped to avoid going down some crazy path in a rushing code fever for the wrong reasons. Yup, the threading will be very useful if the cost of the evaluation is expensive (as most of the real world optimization are), but for this silly OneMax, no need to make it more complicated than it need ;